NASA’s In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration

£5.00

L. Johnson; B. James; R. Baggett; E. E. Montgomery IV (2006), JBIS59, 99-103

Refcode: 2006.59.99
Keywords: Aerocapture, electric propulsion, solar sails, interstellar propulsion

Abstract:
NASA’s In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program’s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called “propellantless” because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.